Wednesday, June 16, 2010

Menuju ke Abstrak

Pemahaman akan pengertian abstrak sepertinya masih dianggap sebagai suatu yang sulit bahkan tak teraplikasi. Bagi orang di pinggir jalan, boleh jadi menganggap orang yang belajar matematika abstrak sebagai orang sinting.

Saatnya kita harus menguak apa yang dimaksud abstrak dalam matematika? Apakah suatu yang tidak real? Hanyakah ngoyoworo ataukah hanyakah khayalan orang? Apakah seperti aljabar abstrak itu suatu yang mengada-ada saja ataukah memang harus menuju ke situ?

Berikut semoga bisa memberi gambaran akan pemahaman tersebut. Sebagai langkah-langkah sebelum ke abstrak, kita berkecimpung dengan aritmatika yang di dalamnya ada proses seperti penjumlahan, perkalian, dan ada penggunaan variabel. Pengenalan abstrak di SMA biasanya dimulai dengan pelajaran induksi matematik dimana harus membuktikan keteraturan sampai tak hingga dengan membuktikan implikasi Pk--->Pk+1 dan membuktikan P0 benar.
Waktu kita melangkah dari perhitungan dasar ke penggunaan variabel, kita meluaskan orientasi kepada cakupan perhitungan yang lebih luas. Kita bisa mengoperasikan bilangan-bilangan tanpa mengetahui berapa bilangannya, cukup dengan variabel. Nah ini, dari aritmatika menuju abstrak yang banyak membuat kepala para mahasiswa sakit, sebenarnya juga merupakan perluasan orientasi menuju semakin beragam dan semakin luas. Kita mulai dengan mempelajari sekelompok obyek, lalu interaksi antar obyek, yang lalu kita namakan operasi biner, mempelajari keteraturannya, mempelajari ciri-cirinya, lalu memformulasikannya menjadi aksioma-aksioma.

Contoh di bawah mungkin bisa menjadi bayangan akan langkah tersebut, kita mulai dengan PENGANTAR TEORI BILANGAN.

Subgroup bilangan bulat
Kita perhatikan perhatikan himpunan bilangan bulat (integer), yaitu {...,-3,-2,-1,0,1,2,3,...} yang lalu biasa dinotasikan dengan Z. < huruf Z ini adalah diambil dari singkatan Zahl=bilangan dari Bhs Jerman>
Diberikan suatu himpunan bagian dari Z, katakanlah himpunan S. Himpunan S disebut subgroup dari Z jika memenuhi :
(i) x+y anggota dari S untuk setiap x dan y anggota dari S,
(ii) 0 anggota dari S,
(iii) -x anggota dari S untuk setiap x anggota dari S.

< catatan : Kalau pernah mempelajari tentang teori group, maka syarat-syarat di atas tidak lain sifat tertutup(i), ada elemen identitas(ii), dan untuk setiap anggota dari S yang bukan 0 punya invers. Di kasus bilangan bulat ini sifat asosiatif bisa dirunut dg mudah dari sifat tertutup >

Suatu himpunan bagian tak kosong S dari Z adalah subgroup jika dan hanya jika x - y anggota dari S untuk setiap x dan y anggota dari S.
Bukti :
S subgroup dari Z ==> x - y anggota S untuk setiap x,y anggota S
Karena y anggota dari S, maka -y anggota dari S
Karena x dan -y anggota dari S, maka x+(-y)=x-y anggota dari S
x - y anggota S untuk setiap x,y anggota S ==> S subgroup dari Z
Karena S tak kososng maka ada anggotanya, misalkan x anggota dari S, maka x-x=0 adalah anggota dari S , jadi 0 dan x anggota dari S sehingga 0-x=-x anggota dari S , lalu jika x dan y anggota dari S, sehingga -y anggota dari S, lalu x-(-y)=x+y anggota dari S . Terbukti.

Taruhlah m adalah bilangan bulat, dan kita buat notasi mZ={mn|n anggota Z}. Maka mZ adalah subgroup dari Z.

Teorema I
Jika S adalah saubgroup dari Z, maka S = mZ untuk suatu bilngan bulat tak negatif m. < dengan kata lain, teorema ini mengatakan bahwa kalau S adalah subgroup dari Z, maka pasti berbentuk himpunan kelipatan dari suatu bilangan bulat tak negatif {0,1,2,3,...} >
Bukti :
Kita buat dua kemungkinan, yaitu :
pertama --> jika S = {0}, maka dapat ditulis S=mZ dengan m=0.
kedua --> jika S tidak sama dengan {0}, atau S memuat bilangan bulat tak nol. Maka tentunya S memuat bilangan bulat positif < karena jika x anggota S maka -x juga anggota S >. Kita ambil misalnya m adalah bilangan bulat positif yang terkecil di S. Lalu suatu bilangan bulat positif n di S akan dapat ditulis dalam bentuk n=qm+r, dimana q adalah suatu bilangan bulat positif dan r suatu bilangan bulat yang memenuhi 0<=r. Dengan demikian r juga anggota S, karena r=n-qm. Karena diasumsikan m adalah yang terkecil, maka haruslah r=0. Jadi n=qm, dengan demikian n anggota mZ, yang berarti S=mZ. Terbukti.

Teorema tersebut mengatakan bahwa kalau sebuah himpunan yang anggotanya bilangan-bilangan bulat serta memenuhi tiga aksioma untuk subgroup di atas, maka tentulah anggota-anggota himpunan tersebut berbentuk kelipatan dari suatu bilangan bulat positif.

Faktor Persekutuan Terbesar
Definisi :
Taruhlah a1,a2,...,ar adalah bilangan bulat, yang tidak semuanya nol. Faktor persekutuan dari a1,a2,...,ar adalah suatu bilangan bulat yang membagi habis setiap a1,a2,...,ar. Faktor persekutuan terbesar dari a1,a2,...,ar adalah bilangan bulat positif terbesar yang membagi habis setiap a1,a2,...,ar. Faktor persekutuan terbesar dari a1,a2,...,ar dinaotasikan dengan (a1,a2,...,ar).

Teorema II
Taruhlah a1,a2,...,ar adalah bilangan bulat, yang tidak semuanya nol. Maka ada bilangan-bilangan bulat sebutlah u1,u2,...,ur sedemikian hingga
(a1,a2,...,ar)=a1u1 + a2u2 + . . . +arur
dimana (a1,a2,...,ar) adalah Faktor Persekutuan Terbesar dari a1,a2,...,ar.
Bukti :
Pembuktian teorema ini, pertama kita harus menunjukkan bahwa suatu himpunan S yang anggota-anggotanya berbentuk n1a1 + n2a2 + . . . +nrar dimana n1, n2,..., nr bilangan-bilangan bulat merupakan subgroup dari Z dengan menunjukkan terpenuhinya 3 aksioma di atas. Lalu setelah terbukti, maka karena
S subgroup Z, akan berbentuk mZ. Dengan kata lain bahwa setiap anggota S merupakan kelipatan dari m. Dengan demikian m adalah faktor persekutuan dari a1,a2,...,ar. Karena FPB adalah faktor persekutuan, maka otomatis ada u1,u2,...,ur sehingga (a1,a2,...,ar)=a1u1 + a2u2 + . . . +arur. Terbukti.

Kiranya, ini bisa menjadi gambaran bahwa yang namanya abstrak bukan suatu yang tidak aplikatif, melainkan adalah perluasan orientasi kita dalam memandang. Memang terlihat lebih sulit, karena kita mencoba menengok yang disebalik dari yang nampak.

Semoga bermanfaat bagi semuanya.

dari:www.forumsains.com

Matematika dan Bilangan Prima

Bilangan prima adalah dasar dari matematika, termasuk salah satu misteri alam semesta. Tidak pernah terbayangkan oleh manusia sebelumnya, sampai ditemukan bahwa bilangan prima juga merupakan dasar dari kehidupan alam, yang dengan usaha keras ingin dijelaskan oleh ilmu ini dalam sains. Pandangan orang umumnya mengatakan bahwa matematika hanyalah penemuan manusia biasa. Sebaliknya, beberapa pemikir masa lalu - Pythagoras, Plato, Cusanus, Kepler, Leibnitz, Newton, Euler, Gauss, termasuk para revolusioner abad ke-20, Planck, Einstein dan Sommerffeld - yakin bahwa keberadaan angka dan bentuk geometris merupakan konsep alam semesta dan konsep yang bebas (independent). Galileo sendiri beranggapan bahwa matematika adalah bahasa Tuhan ketika menulis alam semesta.

Bilangan Prima dan Rencana Penciptaan

Salah satu teka-teki lama yang belum sepenuhnya terpecahkan adalah bilangan prima. Bilangan prima adalah bilangan yang hanya dapat habis dibagi oleh bilangan itu sendiri dan angka 1. Angka 12 bukan merupakan bilangan prima, karena dapat habis dibagi oleh angka lainnya 2, 3, dan 4. Bilangan prima adalah 2, 3, 5, 7, 11, 13, .... dan seterusnya. Banyak bilangan prima tidak terhingga. Tidak peduli berapa banyak kita menghitung, pasti kita akan menemukan bilangan prima, walaupun mungkin makin jarang_ Hal ini menjadi teka-teki kita, jika kita ingat bilangan ini tidak dapat dibagi oleh angka lainnya. Salah satu hal yang menakjubkan, dalam era komputer kita memberikan kodetifikasi semua hal yang penting dan rahasia, di bank, asuransi, dan perhitungan-perhitungan peluru kendali, security system dengan enkripsi, dalam angka jutaan bilangan-bilangan yang tidak habis dibagi oleh angka lainnya. Ini diperlukan karena dengan penggunaan angka lain, kodetifikasi tadi dapat dengan mudah ditembus.

Fenomena inilah yang ditemukan ilmuwan dari Duesseldorf (Dr. Plichta), sehubungan dengan penciptaan alam, yaitu distribusi misterius bilangan prima. Para ilmuwan sudah lama percaya bahwa bilangan prima adalah bahasa universal yang dapat dimengerti oleh semua makhluk (spesies) berintelegensia tinggi, sebagai komunikasi dasar antarmereka. Bahasa ini penuh misteri karena berhubungan dengan perencanaan universal kosmos.

Bilangan lain yang perlu diketahui adalah sisa dari bilangan prima, yakni bilangan komposit, kecuali angka 1, yaitu 4, 6, 8, 9,10,12,14,15, .... dan seterusnya. Dengan kata lain, bilangan komposit adalah bilangan yang terdiri dari minimal dua faktor prima. Misalnya :

6 = 2 x 3 = 2 . 3
30 = 2 x 3 x 5 = 2 . 3 . 5
85 = 5 x 17 = 5 . 17

Selain itu, dikenal pula bilangan khusus, yang disebut prima kembar, yaitu bilangan prima yang angkanya berdekatan dengan selisih 2. Misalnya :

(3,5)
(5,7)
(11,13)
(17,19)

dan seterusnya.

Mayoritas ahli astrofisika juga percaya bahwa di alam semesta terdapat "kode kosmos" atau yang disebut cosmic code based on this order, yang dikenal juga sebagai Theory of Everything (TOE), yang artinya terdapat konstanta-konstanta alam semesta yang saling berhubungan berdasarkan perintah pendesain. Sekali perintah tersebut dapat dipecahkan, maka hal ini akan membuka pandangan sains lainnya yang berhubungan.

diambil dari: www.forumsains.com
ditulis oleh: orion